SYDNEY CHAPMAN

National Center for Atmospheric Research, Boulder, Colo., and Geophysical Institute, University of Alaska, College, Alaska, U.S.A.

RICHARD S. LINDZEN

Dept. of Geophysical Sciences, University of Chicago, Chicago, Ill. U.S.A.

ATMOSPHERIC TIDES

Thermal and Gravitational

D. REIDEL PUBLISHING COMPANY

DORDRECHT-HOLLAND

TABLE OF CONTENTS

PREF	FACE	V
CHA	PTER 1. INTRODUCTORY AND HISTORICAL	1
1.1.	Introduction: Pytheas, Bacon, Newton and Laplace	1
1.2.	The Barometric and Other Daily Variations	4
	1.2A. True or Apparent Time, and Mean Time	6
	1.2B. The Harmonic Dial	7
1.3.	Thermal Tides and Kelvin's Resonance Theory	10
1.4.	More Realistic Atmospheric Models	11
1.5.	The Phase of $S_2(p)$	12
1.6.	Doubts as to the Resonance Theory	13
1.7.	Renewed Hope in the Resonance Theory	14
1.8.	Atmospheric Oscillations as Studied by Weekes and Wilkes	15
1.9.	Rockets Exclude Resonance	18
1.10.	Ozone Absorption of Radiation the Main Cause of $S_2(p)$	19
1.11.	Upper Air Data	21
1.12.	Theoretical Calculations of the Diurnal Thermal Tide	22
1.13.	Other Features of Atmospheric Oscillations	23
CHAI	PTER 2s. THE SOLAR DAILY ATMOSPHERIC OSCILLATIONS AS	
	REVEALED BY METEOROLOGICAL DATA	24
2S 1	The Material Studied; Ground Level Data	24
	Harmonic Analysis of S; The Non-Cyclic Variation	25
	The Seasonal Variation of S	26
25.0.	2S.3A. Daily Seasonal Integers σ (Sigma) or SN (Bartels, 1954)	28
28.4.	The World-Wide Distribution of S , Particularly of $S(p)$	31
20	2S.4A. $S_2(p)$	31
	2S.4A.1. Types of Associated Legendre Functions	35
	2S.4A.2. The Spherical Harmonic Expression of $S_2(p)$	37
	2S.4B. $S_1(p)$	38
	2S.4C. $S_3(p)$	43
	2S.4D. $S_4(p)$	43
2S.5.	The Daily Variation of Air Temperature T	44

2S.6. The Daily Wind Variation $S(V)$	46
2S.7. Atmospheric Daily Changes above Ground Level	48
2S.7A. Daily Variations between the Ground and 30 km	48
2S.7B. Daily Variations from 30 km-60 km	50
2S.7C. Daily Variations from 80–120 km	56
2S.7D. Daily Variations in the Thermosphere	62
2S.7E. Analysis of Data Covering Only a Fraction of a Day	63
CHAPTER 2L. THE LUNAR ATMOSPHERIC TIDE AS REVEALED BY	
METEOROLOGICAL DATA	66
2L.1. Introduction	66
2L.2. The Tropical Lunar Air Tide	67
2L.3. The Lunar Air Tide Outside the Tropics	67
2L.4. The Month and the Lunar Day	69
2L.4A. The Main Harmonic Components of the Lunar Tidal Potential	72
2L.5. Methods of Computation of L from Observed Data; Early Methods	
Based on Apparent Lunar Time	74
2L.6. The Chapman-Miller (or C-M) Method for Meteorological Variables	78
2L.6A. Use of the Integers Mu (or μ) instead of the Integers Nu or	
Nu' (or v')	80
2L.6B. The Components S_p	81
2L.7. Vector Probable Errors	81
2L.8. The Determination of L_2 from Only a Few Meteorological Readings	
per Day	82
2L.9. The Lunar Semidiurnal Barometric Tide $L_2(p)$	84
2L.10. The Expression of $L_2(p)$ in Spherical Harmonic Functions	86
2L.11. The Asymmetry of $L_2(p)$ Relative to the Equator, and its Seasonal	
Variation	91
2L.12. Comparison of $L_2(p)$ and $S_2(p)$	93
2L.13. The Lunar Tidal Wind Variation	95
2L.14. The Lunar Tidal Variation of Air Temperature	100
2L.15. The Lunar Tidal Changes of Height of Various Pressure Levels	103
2L.16. Brief Mention of the Lunar Geomagnetic Tide	104
Affilia in a distribution of the appeal to our or figure as	
CHAPTER 3. QUANTITATIVE THEORY OF ATMOSPHERIC TIDES AND	
THERMAL TIDES	106
3.1. Introduction	106
3.2. Equations	106
3.3. Methods of Solution	113
3.3A. Laplace's Tidal Equation	113
3.3B. Vertical Structure Equation	116

ATTRA	COL	TEDIC	TIDES

IX

	3.3C. Outline of Overall Procedure	119
3.4.	Sources of Excitation	121
	3.4A. Gravitational Excitation	121
	3.4B. Thermal Excitation Due to Exchange of Heat with the Ground	124
	3.4C. Thermal Excitation Due to Direct Atmospheric Absorption of	
	Insolation	125
	3.4D. Summary	127
3.5.	Explicit Solutions	130
	3.5A. The Migrating Solar Semidiurnal Thermal Tide	130
	3.5B. The Solar Diurnal Thermal Tide	138
	3.5C. The Lunar Semidiurnal Tide	151
	3.5D. Other Components	157
3.6.	Shortcomings of Present Calculations	157
	3.6A. Surface Topography	157
	3.6B. Dissipation	159
	3.6B.1. Infrared Cooling	160
	3.6B.2. Molecular Viscosity and Conductivity	164
	3.6B.3. Ion Drag and Thermal Tides in the Ionosphere	166
	3.6C. Non-Linear Effects	167
	3.6D. Neglect of Mean Winds and Horizontal Temperature Gradients	168
	3.6E. Additional Remarks	169
3.7.	Comparison of Theory with Data	169
List	of Symbols for Chapter 3	171
GUI	DE TO THE FIGURES AND TABLES	175
REF	ERENCES	179
IND	EX OF NAMES	188
IND	EX OF SUBJECTS	191
IND	EX OF PLACES	199